CHAPITRE XIX : RELATIONS DE COMPARAISON Correction

a) On a

$$u_0 = \int_0^1 \frac{1}{2} dt = \frac{1}{2}, \quad u_1 = \int_0^1 \frac{1}{1+x} dx = \left[\ln(1+x)\right]_0^1 = \ln 2 \quad \text{et } u_2 = \int_0^1 \frac{1}{1+x^2} dx = \left[\arctan x\right]_0^1 = \frac{\pi}{4}.$$

b) On écrit

$$1 - u_n = \int_0^1 1 dx - \int_0^1 \frac{1}{1 + x^n} dx = \int_0^1 1 - \frac{1}{1 + x^n} dx = \int_0^1 \frac{x^n}{1 + x^n} dx.$$

Or, pour tout $x \in [0,1]$ et tout entier $n \in \mathbb{N}$, on a $0 \leq \frac{x^n}{1+x^n} \leq x^n$. Par croissance et positivité de l'intégrale, il vient

$$0 \leqslant 1 - u_n = \int_0^1 \frac{x^n}{1 + x^n} dx \leqslant \int_0^1 x^n dx = \left[\frac{1}{n+1} x^{n+1} \right]_0^1 = \frac{1}{n+1}.$$

Grâce au théorème des gendarmes, on obtient $\lim_{n\to+\infty} 1 - u_n = 0$, autrement dit $\lim_{n\to+\infty} u_n = 1$.

c) À l'aide d'une intégration par parties en posant $\begin{cases} U(x) = x \\ V'(x) = \frac{x^{n-1}}{1+x^n} \end{cases}$ d'où $\begin{cases} U'(x) = 1 \\ V(x) = \frac{1}{n} \ln(1+x^n) \end{cases}$, il vient

$$\int_0^1 \frac{x^n}{1+x^n} dx = \left[\frac{x}{n} \ln(1+x^n)\right]_0^1 - \int_0^1 \frac{1}{n} \ln(1+x^n) dx = \frac{\ln 2}{n} - \frac{1}{n} \int_0^1 \ln(1+x^n) dx.$$

d) La fonction $f: t \mapsto \ln(1+t)$ est concave sur $]-1,+\infty[$ donc sa représentative graphique est sous sa tangente en 0 qui a pour équation y=f'(0)t+f(0)=t. Ainsi, pour tout $t\in]-1,+\infty[$, on a $\ln(1+t)\leqslant t$.

On en déduit, pour tout $x \in [0,1]$, la double inégalité $0 \le \ln(1+x^n) \le x^n$. Par positivité et croissance de l'intégrale, on obtient

$$0 \leqslant \int_0^1 \ln(1+x^n) dx \leqslant \int_0^1 x^n dx = \frac{1}{n+1}.$$
 (1)

Grâce au théorème des gendarmes, on peut conclure $\lim_{n\to+\infty}\int_0^1 \ln(1+x^n)dx = 0$.

e) En utilisant le résultat de la question c), pour tout entier $n \in \mathbb{N}^*$, on a

$$u_n - 1 = \int_0^1 \frac{1}{1 + x^n} - 1 dx = -\int_0^1 \frac{x^n}{1 + x^n} dx = -\frac{\ln 2}{n} + \frac{1}{n} \int_0^1 \ln(1 + x^n) dx$$

ce qui donne $u_n - 1 + \frac{\ln 2}{n} = \frac{1}{n} \int_0^1 \ln(1 + x^n)$. Ainsi

$$\frac{u_n - 1 + \frac{\ln 2}{n}}{\frac{1}{n}} = \int_0^1 \ln(1 + x^n) dx \underset{n \to +\infty}{\longrightarrow} 0.$$

Autrement dit, on a montré $u_n-1+\frac{\ln 2}{n}=o\left(\frac{1}{n}\right)$ ce qui se réécrit sous la forme

$$u_n = 1 - \frac{\ln 2}{n} + o\left(\frac{1}{n}\right).$$

Lycée Blaise Pascal MPSI 1

On pourra remarquer que nous pouvons établir un résultat plus précis que celui demandé puisque la majoration (1) fournit l'estimation $\int_0^1 \ln(1+x^n) dx = O\left(\frac{1}{n}\right)$ donc

$$u_n = 1 - \frac{\ln 2}{n} + O\left(\frac{1}{n^2}\right).$$